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Abstract

In this paper the transverse oscillations in travelling strings due to arbitrary lateral vibrations of the
supports will be studied. Using the method of Laplace transforms (exact) solutions will be constructed for
the initial-boundary value problems which describe these transverse oscillations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

About 50 years ago Sack [1], Mahalingam [2], and Archibald and Emslie [3] started to investigate
the transverse oscillations in travelling strings due to the sinusoidal lateral vibrations of the supports
over which the string passes. In Refs. [1–3] it is assumed that the transverse displacement of the
string can be expressed in a simple trigonometric function which is directly related to the sinusoidal
lateral vibrations of the supports. In this way the resonance frequencies were found. Recently
Pakdemirli and Boyaci [4] considered the transverse oscillations in travelling strings due to small
lateral vibrations of the supports. A perturbation method (based on the truncation method and the
method of multiple scales) has been used in Ref. [4] to approximate the transverse oscillations of the
string. The applicability of this perturbation method to these moving string problems (in particular
the use of the truncation method) will be discussed at the end of this paper.
The following non-dimensional equation of motion for the string problem will be considered in

this paper:

@2w

@t2
þ 2v

@2w

@x@t
þ ðv2 � 1Þ

@2w

@x2
¼ 0; 0oxo1; t > 0; ð1Þ
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where w ¼ wðx; tÞ is the transverse displacement of the string, v is the (constant) axial transport
velocity of the string, x is the spatial co-ordinate, and t is the time co-ordinate. These
dimensionless quantities are in the following way related to the dimensional ones (see also for
instance Refs. [1–7]): w ¼ wn=l; x ¼ xn=l; t ¼ tnðT=RAl Þ1=2; and v ¼ vn=ðT=RAÞ1=2; in which l is
the (constant) distance between the two supports, T is the (constant) tension in the string, and RA
is the (constant) mass of the string per unit length. Furthermore, it has been assumed that the
oscillations are sufficiently small such that the non-linear terms in the equation of motion can be
neglected. Also gravity effects, bending stiffness of the string, and damping effects have been
neglected. In this paper the following Dirichlet boundary conditions (BC) will be considered:

wð0; tÞ ¼ 0; and wð1; tÞ ¼ f ðtÞ; tX0; ð2Þ

where f ðtÞ describes arbitrary vibrations of the support at x ¼ 1: Only the vibrations of the string
due to the arbitrary vibrations of the support(s) will be considered in this paper. For that reason it
is assumed that the initial displacement of the string and the initial velocity (IV) of the string are
both identically equal to zero, that is,

wðx; 0Þ ¼ 0; and wtðx; 0Þ ¼ 0; 0oxo1 ð3Þ

respectively. In this paper the initial-boundary value problem (1)–(3) for wðx; tÞ will be solved
exactly using the Laplace transform method. It should be remarked that the initial-boundary
value problem (1)–(3) also has been studied in Refs. [1–4]. The resonance frequencies have been
determined in Refs. [1–3]. In Ref. [4] approximations of the solution of the initial-boundary value
problem (1)–(3) have been constructed for some specific, prescribed motion of the supports. The
results as obtained in Refs. [1–4] can readily be compared with the (exact) results for the solution
and for the frequencies as obtained in this paper.
This paper is organized as follows. In Section 2 of this paper the stationary belt problem will be

studied (that is, problem (1)–(3) with v ¼ 0). Standard techniques from the theory of partial
differential equations can be used in this case (see for instance Ref. [8]). In Section 3 of this paper
the axially moving string problem (1)–(3) will be solved exactly using the standard method of
Laplace transforms. Finally in Section 4 of this paper some conclusions will be drawn and some
remarks will be made.

2. The stationary belt

In this section, the initial-boundary value problem (1)–(3) is studied with v ¼ 0; that is,

wtt � wxx ¼ 0; 0oxo1; t > 0;

wð0; tÞ ¼ 0; wð1; tÞ ¼ f ðtÞ; tX0;

wðx; 0Þ ¼ wtðx; 0Þ ¼ 0; 0oxo1: ð4Þ

This initial-boundary value problem (4) can be solved by using the available standard techniques
as for instance described in Section 6 of Chapter 5 in Ref. [8]. Firstly the boundary conditions are
made homogeneous by putting

wðx; tÞ ¼ uðx; tÞ þ xf ðtÞ; ð5Þ
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where uðx; tÞ has to satisfy

utt � uxx ¼ �xf 00ðtÞ; 0oxo1; t > 0;

uð0; tÞ ¼ uð1; tÞ ¼ 0; tX0;

uðx; 0Þ ¼ �xf ð0Þ; utðx; 0Þ ¼ �xf 0ð0Þ; 0oxo1: ð6Þ

Then, the function uðx; tÞ is written into two parts

uðx; tÞ ¼ u1ðx; tÞ þ u2ðx; tÞ; ð7Þ

where u1ðx; tÞ satisfies the homogeneous PDE and the inhomogeneous IVs, that is,

u1tt
� u1xx

¼ 0; 0oxo1; t > 0;

u1ð0; tÞ ¼ u1ð1; tÞ ¼ 0; tX0;

u1ðx; 0Þ ¼ �xf ð0Þ; u1t
ðx; 0Þ ¼ �xf 0ð0Þ; 0oxo1; ð8Þ

and where u2ðx; tÞ satisfies the inhomogeneous PDE and the homogeneous IVs, that is,

u2tt
� u2xx

¼ �xf 00ðtÞ; 0oxo1; t > 0;

u2ð0; tÞ ¼ u2ð1; tÞ ¼ 0; tX0;

u2ðx; 0Þ ¼ u2t
ðx; 0Þ ¼ 0; 0oxo1: ð9Þ

The initial-boundary value problem (8) for u1ðx; tÞ can readily be solved, yielding

u1ðx; tÞ ¼
XN
n¼1

ðAn cosðnptÞ þ Bn sinðnptÞÞ sinðnpxÞ; ð10Þ

where

An ¼ �2

Z 1

0

xf ð0Þ sinðnpxÞ dx ¼
2ð�1Þn

np
f ð0Þ;

and

Bn ¼
�2

np

Z 1

0

xf 0ð0Þ sinðnpxÞ dx ¼
2ð�1Þn

n2p2
f 0ð0Þ:

The initial-boundary value problem (9) for u2ðx; tÞ can be solved by putting

u2ðx; tÞ ¼
XN
n¼1

unðtÞ sinðnpxÞ: ð11Þ

Then, Eq. (11) is substituted into the initial-boundary value problem (9) to obtain

u00
n þ n2p2un ¼ �2f 00ðtÞ

Z 1

0

x sinðnpxÞ dx ¼
2ð�1Þn

np
f 00ðtÞ;

unð0Þ ¼ u0
nð0Þ ¼ 0: ð12Þ
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The initial value problem (12) for unðtÞ can readily be solved, and so from Eq. (11) u2ðx; tÞ follows,
yielding

u2ðx; tÞ ¼
XN
n¼1

2ð�1Þn

n2p2
sinðnptÞ

Z t

0

f 00ðtÞ cosðnptÞ dt� cosðnptÞ
Z t

0

f 00ðtÞ sinðnptÞ dt
� �

sinðnpxÞ

¼
XN
n¼1

2ð�1Þn

n2p2

Z t

0

f 00ðtÞ sinðnpðt � tÞÞ dtsinðnpxÞ: ð13Þ

From Eqs. (5), (7), (10), and (13) the solution wðx; tÞ of the initial-boundary value problem (4)
now follows. By introducing

Sðx; tÞ ¼
XN
n¼1

2ð�1Þn

n2p2
sinðnptÞ sinðnpxÞ;

this solution wðx; tÞ can also be written in the compact form

wðx; tÞ ¼ f ð0ÞStðx; tÞ þ f 0ð0ÞSðx; tÞ þ
Z t

0

f 00ðtÞSðx; t � tÞ dtþ xf ðtÞ: ð14Þ

3. The axially moving string

In this section the initial-boundary value problem (1)–(3) will be studied with v2a1: The
method of Laplace transforms are used to construct the (exact) solution for this problem. Let
W ðx; sÞ be the Laplace transform of wðx; tÞ; that is,

W ðx; sÞ ¼
Z

N

0

wðx; tÞe�st dt: ð15Þ

Then, by applying the Laplace transform to the PDE (1) and by using the IVs (3), it follows

s2W ðx; sÞ � swðx; 0Þ � wtðx; 0Þ þ 2vðsWxðx; sÞ � wxðx; 0ÞÞ þ ðv2 � 1ÞWxxðx; sÞ ¼ 0

) Wxx þ ð2vs=ðv2 � 1ÞÞWx þ ðs2=ðv2 � 1ÞÞW ¼ 0: ð16Þ

Eq. (16) for W ðx; sÞ can readily be solved, yielding

W ðx; sÞ ¼ C1ðsÞ expð�sx=ðv þ 1ÞÞ þ C2ðsÞ expð�sx=ðv � 1ÞÞ; ð17Þ

where C1ðsÞ and C2ðsÞ are still arbitrary functions, which will be determined by the BCs (2). Let
FðsÞ be the Laplace transform of f ðtÞ: Then, by applying the Laplace transform to the BCs (2) it
follows that

W ð0; sÞ ¼ 0 and W ð1; sÞ ¼ F ðsÞ: ð18Þ

From (17) and (18) it then follows that

C1ðsÞ ¼ F ðsÞ=ðexpð�s=ðv þ 1ÞÞ � expð�s=ðv � 1ÞÞÞ and C2ðsÞ ¼ �C1ðsÞ;

and so,

W ðx; sÞ ¼ F ðsÞðexpð�sx=ðv þ 1ÞÞ � expð�sx=ðv � 1ÞÞÞ=ðexpð�s=ðv þ 1ÞÞ � expð�s=ðv � 1ÞÞÞ: ð19Þ
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The inverse Laplace transform of W ðx; sÞ is defined to be

wðx; tÞ ¼
1

2pi

Z gþiN

g�iN

W ðx; sÞest ds ¼
X

n

ResðsnÞ ð20Þ

for some g > 0; and where ResðsnÞ is the residue of W ðx; sÞest at s ¼ sn: Since f ðtÞ is arbitrary it
follows that the poles in Eq. (20) due to F ðsÞ are unknown. For that reason Eq. (19) can be
rewritten in the form

W ðx; sÞ ¼ FðsÞHðx; sÞ

with

Hðx; sÞ ¼ ðexpð�sx=ðv þ 1ÞÞ � expð�sx=ðv � 1ÞÞÞ=ðexpð�s=ðv þ 1ÞÞ � expð�s=ðv � 1ÞÞÞ: ð21Þ

The inverse Laplace transform applied to Eq. (21) will eventually lead to a convolution integral in
the ðx; tÞ domain. Before this inverse transform can be determined the singularities of Hðx; sÞ have
to be calculated first. These singularities of Hðx; sÞ are given by

exp
�s

v þ 1

� �
� exp

�s

v � 1

� �
¼ 0

3 exp
2s

v2 � 1

� �
¼ 1

) s ¼ sn ¼ ðv2 � 1Þnpi ð22Þ

with nAZ: It should be observed that s0 ¼ 0 is not a pole of Hðx; sÞ; and that all other poles of
Hðx; sÞ are simple and are given by Eq. (22) with nAZ\f0g: To obtain a solution form for wðx; tÞ
which is immediately comparable to the case v ¼ 0 (see Eq. (14)) expression (21) for W ðx; sÞ is
rewritten as

W ðx; sÞ ¼ ðs2FðsÞ � sf ð0Þ � f 0ð0ÞÞ
Hðx; sÞ

s2
þ ðsf ð0Þ þ f 0ð0ÞÞ

Hðx; sÞ
s2

: ð23Þ

Now it should be observed that Hðx; sÞ=s2 has a pole of order two at s ¼ 0; and that Hðx; sÞ=s2 has
poles of order one at s ¼ sn ¼ ðv2 � 1Þnpi with nAZ\f0g: The inverse Laplace transform of
Hðx; sÞ=s2; that is, LinvðHðx; sÞ=s2Þ now easily follows, yielding

Linv Hðx; sÞ
s2

� �
¼

1

2pi

Z gþiN

g�iN

Hðx; sÞ
s2

est ds

¼
1

1!
lim
s-0

@

@s
ðHðx; sÞestÞ þ

X
na0

ResðsnÞ ¼ ?

¼
x

v2 � 1
ðv � xv þ tðv2 � 1ÞÞ
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�
XN
n¼1

cosððv2 � 1ÞnptÞ
n2p2ðv2 � 1Þ

½cosððv � 1ÞnpÞðcosððv � 1ÞnpxÞ � cosððv þ 1ÞnpxÞÞ
�

þsinððv � 1ÞnpÞðsinððv � 1ÞnpxÞ � sinððv þ 1ÞnpxÞÞ�

þ
sinððv2 � 1ÞnptÞ

n2p2ðv2 � 1Þ
½sinððv � 1ÞnpÞðcosððv þ 1ÞnpxÞ � cosððv � 1ÞnpxÞÞ

þ cosððv � 1ÞnpÞðsinððv � 1ÞnpxÞ � sinððv þ 1ÞnpxÞÞ�
�

¼ h2ðx; tÞ: ð24Þ

Further it should be observed that Hðx; sÞ=s has only poles of order one at s ¼ ðv2 � 1Þnpi with
nAZ: The inverse Laplace transform of Hðx; sÞ=s now also easily follows, yielding

Linv Hðx; sÞ
s

� �
¼

1

2pi

Z gþiN

g�iN

Hðx; sÞ
s

est ds ¼
X
nAZ

ResðsnÞ ¼ ?

¼ x þ
XN
n¼1

sinððv2 � 1ÞnptÞ
np

½cosððv � 1ÞnpÞðcosððv � 1ÞnpxÞ � cosððv þ 1ÞnpxÞÞ
�

þ sinððv � 1ÞnpÞðsinððv � 1ÞnpxÞ � sinððv þ 1ÞnpxÞÞ�

þ
cosððv2 � 1ÞnptÞ

np
½sinððv � 1ÞnpÞðcosððv � 1ÞnpxÞ � cosððv þ 1ÞnpxÞÞ

þ cosððv � 1ÞnpÞðsinððv þ 1ÞnpxÞ � sinððv � 1ÞnpxÞÞ�
�

¼ h1ðx; tÞ ¼
@h2

@t
ðx; tÞ: ð25Þ

Since the inverse Laplace transform of s2F ðsÞ � sf ð0Þ � f 0ð0Þ is f ðtÞ; it then finally follows from
Eqs. (20) and (23)–(25) that

wðx; tÞ ¼
Z t

0

f 00ðtÞh2ðx; t � tÞ dtþ f ð0Þh1ðx; tÞ þ f 0ð0Þh2ðx; tÞ; ð26Þ

where h2ðx; tÞ and h1ðx; tÞ are given by Eqs. (24) and (25) respectively. By putting

hðx; tÞ ¼ �
XN
n¼1

cosððv2 � 1ÞnptÞ
n2p2ðv2 � 1Þ

½cosððv � 1ÞnpÞðcosððv � 1ÞnpxÞ � cosððv þ 1ÞnpxÞÞ
�

þ sinððv � 1ÞnpÞðsinððv � 1ÞnpxÞ � sinððv þ 1ÞnpxÞÞ�

þ
sinððv2 � 1ÞnptÞ

n2p2ðv2 � 1Þ
½sinððv � 1ÞnpÞðcosððv þ 1ÞnpxÞ � cosððv � 1ÞnpxÞÞ

þ cosððv � 1ÞnpÞðsinððv � 1ÞnpxÞ � sinððv þ 1ÞnpxÞÞ�
�
; ð27Þ
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the solution of the initial-boundary value problem (1)–(3) can be rewritten as

wðx; tÞ ¼
Z t

0

f 00ðtÞhðx; t � tÞ dtþ f ð0Þ
@h

@t
ðx; tÞ

þ f 0ð0Þhðx; tÞ þ
vxð1� xÞ

v2 � 1
f 0ðtÞ þ xf ðtÞ: ð28Þ

For v ¼ 0 it immediately follows from Eqs. (27) and (28) that respresentation (14) for wðx; tÞ is
again obtained. It can also be observed from Eqs. (27) and (28) that resonances (that is,
unbounded behaviour of wðx; tÞ in time) can occur when for (at least) one nAZþ

Z t

0

f 00ðtÞ cosððv2 � 1Þnpðt � tÞÞ dt and=or

Z t

0

f 00ðtÞ sinððv2 � 1Þnpðt � tÞÞ dt ð29Þ

are unbounded in time. For instance for f ðtÞ ¼ cosðotÞ with o equal to (or close to) ðv2 � 1Þnp it
follows from Eq. (29) that resonance occurs (see also Refs. [1,2] or [3] for a similar result). Also for
a more general periodic function f ðtÞ with period 2=ðmðv2 � 1ÞÞ (for some fixed mAZþÞ it easily
follows from Eq. (29) that resonances will occur.

4. Conclusions and remarks

In this paper the transverse oscillations in travelling strings due to arbitrary lateral vibrations
of the support(s) have been studied. It has been shown how the initial-boundary value problem
(1)–(3) which describes these oscillations can be solved using the method of Laplace transforms.
The (exact) solution has been constructed explicitly, and resonance conditions have been derived.
In this paper a homogeneous boundary condition at x ¼ 0 and an inhomogeneous one at x ¼ 1

have been considered. When both boundary conditions are inhomogeneous the method of
Laplace transforms can still be applied. In fact the method of Laplace transforms can be applied
to the following initial-boundary value problem:

wtt þ 2vwxt þ ðv2 � 1Þwxx ¼ gðx; tÞ; 0oxo1; t > 0;

wð0; tÞ ¼ hðtÞ; wð1; tÞ ¼ f ðtÞ; tX0;

wðx; 0Þ ¼ w0ðxÞ; wtðx; 0Þ ¼ w1ðxÞ; 0oxo1: ð30Þ

The calculations, however, become lengthy but remain completely similar to the calculations as
presented in Section 3 of this paper. Also when the Dirichlet boundary conditions in Eq. (30) are
replaced by for instance Neumann or Robin boundary conditions similar calculations can be
performed to those presented in this paper.
Recently in Ref. [4] the transverse oscillations in travelling strings due to small lateral vibrations

of the supports have been considered. A perturbation method which is based on the truncation
method has been used in Ref. [4] to approximate the transverse oscillations of the string. In fact in
Ref. [4] the approximation is truncated to a single mode of vibration. The authors of Ref. [4] and
their co-authors (see the list of references in Ref. [4]) have applied this truncation method to many
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problems which are related to axially moving strings or beams. As can be seen from Eqs. (27) and
(28), however, the exact solution for the initial-boundary value problem (1)–(3) will always consist
of infinitely many modes of vibration. So, truncating the approximation to a single mode of
vibration (as has been done in Ref. [4]) will in general not give accurate approximations on long
time scales. In fact the accuracy of the approximations as obtained in Ref. [4] on a specified time
interval can be readily determined by comparing Eq. (28) with the approximations as obtained in
Ref. [4]. A similar conclusion on the applicability of the truncation method to problems for axially
moving strings or beams with a time-varying velocity has been drawn in Refs. [9,10].
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